Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Med ; 29(11): 2854-2865, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37932548

RESUMEN

People with late-stage Parkinson's disease (PD) often suffer from debilitating locomotor deficits that are resistant to currently available therapies. To alleviate these deficits, we developed a neuroprosthesis operating in closed loop that targets the dorsal root entry zones innervating lumbosacral segments to reproduce the natural spatiotemporal activation of the lumbosacral spinal cord during walking. We first developed this neuroprosthesis in a non-human primate model that replicates locomotor deficits due to PD. This neuroprosthesis not only alleviated locomotor deficits but also restored skilled walking in this model. We then implanted the neuroprosthesis in a 62-year-old male with a 30-year history of PD who presented with severe gait impairments and frequent falls that were medically refractory to currently available therapies. We found that the neuroprosthesis interacted synergistically with deep brain stimulation of the subthalamic nucleus and dopaminergic replacement therapies to alleviate asymmetry and promote longer steps, improve balance and reduce freezing of gait. This neuroprosthesis opens new perspectives to reduce the severity of locomotor deficits in people with PD.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Masculino , Animales , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/terapia , Marcha/fisiología , Médula Espinal
2.
J Neural Eng ; 19(6)2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36541540

RESUMEN

Objective.Meralgia paresthetica (MP) is a mononeuropathy of the exclusively sensory lateral femoral cutaneous nerve (LFCN) that is difficult to treat with conservative treatments. Afferents from the LFCN enter the spinal cord through the dorsal root entry zones (DREZs) innervating L2 and L3 spinal segments. We previously showed that epidural electrical stimulation of the spinal cord can be configured to steer electrical currents laterally in order to target afferents within individual DREZs. Therefore, we hypothesized that this neuromodulation strategy is suitable to target the L2 and L3 DREZs that convey afferents from the painful territory, and thus alleviates MP related pain.Approach.A patient in her mid-30s presented with a four year history of dysesthesia and burning pain in the anterolateral aspect of the left thigh due to MP that was refractory to medical treatments. We combined neuroimaging and intraoperative neuromonitoring to guide the surgical placement of a paddle lead over the left DREZs innervating L2 and L3 spinal segments.Main results.Optimized electrode configurations targeting the left L2 and L3 DREZs mediated immediate and sustained alleviation of pain. The patient ceased all other medical management, reported improved quality of life, and resumed recreational physical activities.Significance.We introduced a new treatment option to alleviate pain due to MP, and demonstrated how neuromodulation strategies targeting specific DREZs is effective to reduce pain confined to specific regions of the body while avoiding disconfort.


Asunto(s)
Neuropatía Femoral , Síndromes de Compresión Nerviosa , Humanos , Femenino , Calidad de Vida , Síndromes de Compresión Nerviosa/complicaciones , Síndromes de Compresión Nerviosa/diagnóstico , Síndromes de Compresión Nerviosa/terapia , Dolor , Raíces Nerviosas Espinales
3.
N Engl J Med ; 386(14): 1339-1344, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35388667

RESUMEN

Orthostatic hypotension is a cardinal feature of multiple-system atrophy. The upright posture provokes syncopal episodes that prevent patients from standing and walking for more than brief periods. We implanted a system to restore regulation of blood pressure and enable a patient with multiple-system atrophy to stand and walk after having lost these abilities because of orthostatic hypotension. This system involved epidural electrical stimulation delivered over the thoracic spinal cord with accelerometers that detected changes in body position. (Funded by the Defitech Foundation.).


Asunto(s)
Terapia por Estimulación Eléctrica , Hipotensión Ortostática , Atrofia de Múltiples Sistemas , Acelerometría , Atrofia , Presión Sanguínea/fisiología , Terapia por Estimulación Eléctrica/métodos , Electrodos Implantados , Espacio Epidural , Humanos , Hipotensión Ortostática/diagnóstico , Hipotensión Ortostática/etiología , Hipotensión Ortostática/terapia , Atrofia de Múltiples Sistemas/terapia , Postura/fisiología , Vértebras Torácicas
4.
Nat Med ; 28(2): 260-271, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35132264

RESUMEN

Epidural electrical stimulation (EES) targeting the dorsal roots of lumbosacral segments restores walking in people with spinal cord injury (SCI). However, EES is delivered with multielectrode paddle leads that were originally designed to target the dorsal column of the spinal cord. Here, we hypothesized that an arrangement of electrodes targeting the ensemble of dorsal roots involved in leg and trunk movements would result in superior efficacy, restoring more diverse motor activities after the most severe SCI. To test this hypothesis, we established a computational framework that informed the optimal arrangement of electrodes on a new paddle lead and guided its neurosurgical positioning. We also developed software supporting the rapid configuration of activity-specific stimulation programs that reproduced the natural activation of motor neurons underlying each activity. We tested these neurotechnologies in three individuals with complete sensorimotor paralysis as part of an ongoing clinical trial ( www.clinicaltrials.gov identifier NCT02936453). Within a single day, activity-specific stimulation programs enabled these three individuals to stand, walk, cycle, swim and control trunk movements. Neurorehabilitation mediated sufficient improvement to restore these activities in community settings, opening a realistic path to support everyday mobility with EES in people with SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Estimulación de la Médula Espinal , Humanos , Pierna , Parálisis/rehabilitación , Médula Espinal/fisiología , Traumatismos de la Médula Espinal/rehabilitación , Caminata/fisiología
5.
NPJ Digit Med ; 3: 121, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33024831

RESUMEN

The need to develop patient-specific interventions is apparent when one considers that clinical studies often report satisfactory motor gains only in a portion of participants. This observation provides the foundation for "precision rehabilitation". Tracking and predicting outcomes defining the recovery trajectory is key in this context. Data collected using wearable sensors provide clinicians with the opportunity to do so with little burden on clinicians and patients. The approach proposed in this paper relies on machine learning-based algorithms to derive clinical score estimates from wearable sensor data collected during functional motor tasks. Sensor-based score estimates showed strong agreement with those generated by clinicians. Score estimates of upper-limb impairment severity and movement quality were marked by a coefficient of determination of 0.86 and 0.79, respectively. The application of the proposed approach to monitoring patients' responsiveness to rehabilitation is expected to contribute to the development of patient-specific interventions, aiming to maximize motor gains.

6.
Neuroscience ; 368: 199-213, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28412497

RESUMEN

Whisker movements are used by rodents to touch objects in order to extract spatial and textural tactile information about their immediate surroundings. To understand the mechanisms of such active sensorimotor processing it is important to investigate whisker motor control. The activity of neurons in the neocortex affects whisker movements, but many aspects of the organization of cortical whisker motor control remain unknown. Here, we filmed whisker movements evoked by sequential optogenetic stimulation of different locations across the left dorsal sensorimotor cortex of awake head-restrained mice. Whisker movements were evoked by optogenetic stimulation of many regions in the dorsal sensorimotor cortex. Optogenetic stimulation of whisker sensory barrel cortex evoked retraction of the contralateral whisker after a short latency, and a delayed rhythmic protraction of the ipsilateral whisker. Optogenetic stimulation of frontal cortex evoked rhythmic bilateral whisker protraction with a longer latency compared to stimulation of sensory cortex. Compared to frontal cortex stimulation, larger amplitude bilateral rhythmic whisking in a less protracted position was evoked at a similar latency by stimulating a cortical region posterior to Bregma and close to the midline. These data suggest that whisker motor control might be broadly distributed across the dorsal mouse sensorimotor cortex. Future experiments must investigate the complex neuronal circuits connecting specific cell-types in various cortical regions with the whisker motor neurons located in the facial nucleus.


Asunto(s)
Conducta Animal/fisiología , Mapeo Encefálico/métodos , Potenciales Evocados Motores/fisiología , Actividad Motora/fisiología , Corteza Motora/fisiología , Imagen Óptica/métodos , Optogenética/métodos , Corteza Somatosensorial/fisiología , Vibrisas/fisiología , Animales , Percepción Auditiva/fisiología , Cabeza , Ratones , Ratones Transgénicos , Restricción Física
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...